Resistant estimates for high dimensional and functional data based on random projections

نویسندگان

  • Ricardo Fraiman
  • Marcela Svarc
چکیده

We propose a new robust estimation method based on random projections that is adaptive and, automatically produces a robust estimate, while enabling easy computations for high or infinite dimensional data. Under some restricted contamination models, the procedure is robust and attains full efficiency. We tested the method using both simulated and real data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

Memory and Computation Efficient PCA via Very Sparse Random Projections

Algorithms that can efficiently recover principal components in very high-dimensional, streaming, and/or distributed data settings have become an important topic in the literature. In this paper, we propose an approach to principal component estimation that utilizes projections onto very sparse random vectors with Bernoulli-generated nonzero entries. Indeed, our approach is simultaneously effic...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Random Projections with Bayesian Priors

The technique of random projection is one of dimension reduction, where high dimensional vectors in RD are projected down to a smaller subspace in Rk. Certain forms of distances or distance kernels such as Euclidean distances, inner products [10], and lp distances [12] between high dimensional vectors are approximately preserved in this smaller dimensional subspace. Word vectors which are repre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2013